X^2+10x=567

Simple and best practice solution for X^2+10x=567 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+10x=567 equation:



X^2+10X=567
We move all terms to the left:
X^2+10X-(567)=0
a = 1; b = 10; c = -567;
Δ = b2-4ac
Δ = 102-4·1·(-567)
Δ = 2368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2368}=\sqrt{64*37}=\sqrt{64}*\sqrt{37}=8\sqrt{37}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-8\sqrt{37}}{2*1}=\frac{-10-8\sqrt{37}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+8\sqrt{37}}{2*1}=\frac{-10+8\sqrt{37}}{2} $

See similar equations:

| 20=3t+8 | | 2c=3c+8 | | -4-8f=8-10f | | 48=10+x/2 | | 4w=8+4w | | 2m^2-3m=4 | | -r-5r=-6r | | p+5=8p+5=8. | | s/3+14=18 | | 10j=1+10j | | 1/4r=2-6 | | 2+7b+7=28 | | -5x^2-20x=-160 | | 2x=-3(x+5) | | 7-3/8w=13 | | -2x-6=x+2 | | -c/5+4=3 | | x=2.5-(8) | | 3(2-x)=7x+12-4 | | -2g+1/3g=35/6 | | -5^2-20x=-160 | | 2^3x=9x | | (8y+10)=6y | | 35/6=-2g+1/3g | | x/8+20=32 | | 10+2x+9=40 | | 16x2=-56 | | -3x^2-24x=-195 | | -2(x+11)=-18 | | x^2–2x+6=30 | | 1/3k+1=1/4k-2 | | 180=97+x+27+64 |

Equations solver categories